Math 25
Fall 2017
Lecture 5

Solve by Matrix method

$$
\left\{\begin{array}{l}
x+2 y+z=0 \\
2 x-y-z=5 \\
x+y-2 z=1
\end{array}\right.
$$

$$
\left[\begin{array}{rrr:r}
1 & 2 & 1 & 0 \\
2 & -1 & -1 & 5 \\
1 & 1 & -2 & 1
\end{array}\right]
$$

(1) Augmented matrix

$$
\begin{aligned}
& \begin{array}{l}
(-2) R 1+R 2 \rightarrow R 2 \\
(-) R 1+R 3 \rightarrow R 3
\end{array} \\
& R 2 \mapsto R 3 \\
& (2) R 2+R 1 \rightarrow R 1 \\
& (-5) R 2+R 3 \rightarrow R 3
\end{aligned} \quad\left[\begin{array}{ccc:c}
1 & 2 & 1: 0 \\
0 & -5 & -3: 5 \\
0 & -1 & -3 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
1 & 2 & 1: 0 \\
0 & -1 & -3: 1 \\
0 & -5 & -3: 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc:l}
1 & 0 & -5 & 2 \\
0 & -1 & -3 & 1 \\
0 & 0 & 12 & 0
\end{array}\right]} \\
& \begin{array}{l}
R 3 \div 12 \rightarrow R 3 \\
R 2 \div(-1) \rightarrow R 2
\end{array}\left[\begin{array}{ccc:c}
1 & 0 & -5 & 2 \\
0 & 1 & 3 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \begin{array}{l}
(-3) R 3+R 2 \rightarrow R 2 \\
(5) R 3+R 1 \rightarrow R 1 \\
\text { final Ans. }
\end{array} \quad\left[\begin{array}{lll:l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow x=-1 \rightarrow z=0 \\
& \text { final Ans. }
\end{aligned}
$$

$$
(2,-1,0)
$$

$$
\left.\begin{array}{r}
A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
0 & 1 & -4
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 5 & -2 \\
4 & 2 & 3 \\
7 & -1 & -3
\end{array}\right] \\
3 \times 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

find

$$
3 A=3\left[\begin{array}{lll}
2 & 3 & -2 \\
0 & 1 & -4
\end{array}\right]=\left[\begin{array}{ccc}
6 & 9 & -6 \\
0 & 3 & -12
\end{array}\right]
$$

find

$$
\begin{aligned}
A-2 C & =\left[\begin{array}{lll}
2 & 3 & -2 \\
0 & 1 & -4
\end{array}\right]-2\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 3 & -2 \\
0 & 1 & -4
\end{array}\right]-\left[\begin{array}{lll}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & -8 \\
-8 & -9 & -16
\end{array}\right]
\end{aligned}
$$

find $A B \dot{\varepsilon}, B A$

$$
\begin{aligned}
& A B=\left[\begin{array}{ccc}
2 & 3 & -2 \\
0 & 1 & -4
\end{array}\right]\left[\begin{array}{ccc}
1 & 5 & -2 \\
4 & 2 & 3 \\
7 & -1 & -3 \\
3 \times 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 18 & 11 \\
-24 & 6 & 15
\end{array}\right] \\
& \text { BA }=\left[\begin{array}{c}
\text { 3×3 }
\end{array}\right] \cdot\left[\begin{array}{c}
\text { Not possible } \\
\text { Different }
\end{array}\right]
\end{aligned}
$$

Identity Matrix

1) Square matrix
2) All elements on main diagonal are 1
3) Rest of elements are 0 .

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If operation can be done.

$$
\begin{array}{ll}
I A=A \quad A I=A & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
4 & 1
\end{array}\right]} \\
& =\left[\begin{array}{cc}
2 & -3 \\
4 & 1
\end{array}\right]
\end{array}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & -3 & 4 \\
0 & 1 & 7 \\
0 & 0 & 2
\end{array}\right] \text { Find } A I_{3} \\
& {\left[\begin{array}{ccc}
2 & -3 & 4 \\
0 & 1 & 7 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & -3 & 4 \\
0 & 1 & 7 \\
0 & 0 & 2
\end{array}\right]}
\end{aligned}
$$

whenever operation is doable, If $A B=I$ and $B A=I$, then
$A \quad \dot{B}$ are Inverse of each other.

Show $A \dot{B}$ are inverse of each other.

$$
A=\left[\begin{array}{ll}
2 & 9 \\
1 & 5
\end{array}\right]
$$

$$
B=\left[\begin{array}{cc}
5 & -9 \\
-1 & 2
\end{array}\right]
$$

find $A B$
$\left[\begin{array}{ll}2 & 9 \\ 1 & 5\end{array}\right]\left[\begin{array}{cc}5 & -9 \\ -1 & 2\end{array}\right]$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
\text { find } \\
{\left[\begin{array}{cc}
5 & -9 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 9 \\
1 & 5
\end{array}\right]} \\
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array} .\right.
\end{array}\right.
$$

$A \dot{B}$ are inverse of each other.

Inverse of $A: A^{-1} \longrightarrow$ Not exponent Does not mean
A must be reciprocal
Square matrix
\# of rows $=$ \# of Columns

$$
\left[\begin{array}{lll}
A & \vdots & I
\end{array}\right] \rightarrow[I \quad \vdots
$$

Perform elem. vow operations

If A does not have an inverse, It is called a Singular matrix.

Find A^{-1} if exists for $A=\left[\begin{array}{ll}2 & 9 \\ 1 & 5\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll:ll}
2 & 9 & 1 & 0 \\
1 & 5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll:ll}
1 & 5 & 0 & 1 \\
2 & 9 & 1 & 0
\end{array}\right]} \\
& R 1 \leftrightarrow R 2 \quad(-2) R 1+R 2 \rightarrow R 2 \\
& {\left[\begin{array}{cc:cc}
1 & 5 & 0 & 1 \\
0 & -1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc:c}
1 & 5 & 0 \\
0 & 1 & 1 \\
0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll:l:l}
1 & 1 & 0 & 5 \\
0 & 1 & -A^{-1} & 2
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cc}
2 & -5 \\
-6 & 15
\end{array}\right] \text { find } A^{-1} \\
{\left[\begin{array}{cc:c}
2 & -5 & 1
\end{array} 0\right.} \\
-6
\end{array} 15: 001\right]\left[\begin{array}{cc:c}
2 & -5 & 1
\end{array} 00\left[\begin{array}{ccc}
0 & 0 & 1
\end{array}\right] .\right.
$$

$$
(3) R 1+R 2 \rightarrow R_{2}
$$

This element will never becomes 1.
Matrix A is Singular.

$$
A^{-1} \text { does not exist. }
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -2 \\
-1 & 0 & 1
\end{array}\right], \text { find } A^{-1} \begin{array}{c}
\text { i) is } A \text { a square } \\
\text { matrix? } \\
\text { It is } 3 \times 3,
\end{array} \\
& {\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 0 & 0 \\
1 & 1 & -2 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 & 1
\end{array}\right]} \\
& (-1) R 1+R 2 \rightarrow R 2 \\
& R 1+R 3 \rightarrow R 3
\end{aligned} \quad\left[\begin{array}{ccc:c}
1 & -1 & 1: 1 & 0 \\
0 & 2 & -3 & -1 \\
0 & 1 & 0 \\
0 & -1 & 2: 1 & 0 \\
R
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
2 & 9 \\
1 & 5
\end{array}\right] \quad B=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad C=\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
$$

$$
\text { find } \begin{aligned}
& A B=\left[\begin{array}{ll}
2 & 9 \\
1 & 5
\end{array}\right] \\
& 2 \times 2
\end{aligned}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{2 \times 1}{\left[\begin{array}{l}
2 x+9 y \\
x+5 y
\end{array}\right]}
$$

Solve $\quad A B=C \quad\left[\begin{array}{l}2 x+9 y \\ x+5 y\end{array}\right]=\left[\begin{array}{l}-3 \\ 4\end{array}\right] \Rightarrow \begin{aligned} & 2 x+9 y=-3 \\ & x+5 y=4\end{aligned}$
Rewrite $\left[\begin{array}{ll}2 & 9 \\ 1 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
0 & -1 & 2 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & -1 & 0 & 1 & 1 \\
0 & 0 & 1: & 1 & 1 & 2
\end{array}\right]} \\
& R 2+R 1 \rightarrow R 1 \\
& R 2+R 3 \rightarrow R 3 \\
& R 3+R 2 \rightarrow R 2 \\
& \underbrace{\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 1 & 2
\end{array}\right]}_{I_{3}} \underbrace{}_{A^{-1}}
\end{aligned}
$$

$$
\vec{A}^{\prime}=\left[\begin{array}{cc}
5 & -9 \\
-1 & 2
\end{array}\right]
$$

Multiply from the left by A^{-1}

$$
\begin{aligned}
A B & =C \\
\underbrace{-1} A B & =A^{-1} C \\
I B & =A^{-1} C \\
B & =A^{-1} C
\end{aligned}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
5 & -9 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-3 \\
y
\end{array}\right]=\left[\begin{array}{c}
-51 \\
41
\end{array}\right]
$$

If $A x=6$, and A^{-1} exists,
then $A^{-1} A x=A^{-1} b \quad A$ is the coif. matrix
x is column

$$
\left.\left.\begin{array}{cc}
x=A^{-1} b \quad & \begin{array}{c}
\text { matrix for } \\
\text { variables only } y
\end{array} \\
2 x-y+y=5 \\
3 x+2 y-z=1
\end{array} \begin{array}{ccc}
1 & 1 & -1 \\
2 & -1 & 4 \\
3 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] \begin{array}{l}
b \text { is column } \\
\text { matrix for RHS } \\
\text { constants. }
\end{array}\right]
$$

If A^{-1} exists, then $x=A^{-1} b$

Solve $\left\{\begin{array}{lr}6 x-2 y-z=5 & \text { by inverse } \\ 4 x-2 y+z=8 & \text { method. } \\ -10 x+4 y+z=0 & \end{array}\right.$

$$
\underbrace{\left[\begin{array}{ccc}
6 & -2 & -1 \\
4 & -2 & 1 \\
-10 & 4 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
5 \\
8 \\
0
\end{array}\right]}_{b} \Rightarrow \begin{aligned}
& x=A^{-1} b
\end{aligned}
$$

Looking for A^{-1}

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
6 & -2 & -1 & 1 & 0 & 0 \\
4 & -2 & 1 & 0 & 1 & 0 \\
-10 & 4 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \begin{array}{l}
(2) R 1 \rightarrow R 1 \\
(-3) R 2 \rightarrow R 2 \\
R 1+R 2 \rightarrow R 2
\end{array} \quad\left[\begin{array}{lll:lll}
12 & -4 & -2: 2 & 0 & 0 \\
-120 & 6^{2} & -5 & 2 & -3 & 0 \\
-10 & 4 & 1: 0 & 0 & 1
\end{array}\right] \\
& \begin{array}{l}
R 1 \div 2 \rightarrow R 1 \\
(5) R 1 \rightarrow R 1 \\
(3) R 3 \rightarrow R 3
\end{array} \quad\left[\begin{array}{ccc:ccc}
6 & -2 & -1: 1 & 0 & 0 \\
0 & 2 & -5 & 2 & -3 & 0 \\
-10 & 4 & 1: 0 & 0 & 1
\end{array}\right] \\
& R 1+R 3 \rightarrow R 3 \quad R 1 \div 5 \rightarrow R 1
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
6 & -2 & -1 & 1 & 0 & 0 \\
0 & 2 & -5 & 2 & -3 & 0 \\
-10 & 4 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc:ccc}
30 & -10 & -5 & 5 & 0 & 0 \\
0 & 2 & -5 & 2 & -3 & 0 \\
-36^{0} & k^{2} & 3^{-2} & 5 & 0 & 3
\end{array}\right]} \\
& \begin{array}{l}
(5) R 1 \rightarrow R I \\
(3) R 3 \rightarrow R 3 \\
R 1+R 3 \rightarrow R 3 \\
R 1 \div 5 \rightarrow R 1
\end{array} \quad\left[\begin{array}{ccc:c:c}
6 & -2 & -1: 1 & 0 & 0 \\
0 & 2 & -5 & 2 & -3 \\
0 & 2 & -2 & 5 & 0
\end{array}\right] \\
& \begin{array}{l}
\begin{array}{c}
(-1) R 2+R 3 \rightarrow R 3 \\
R 2+R 1 \rightarrow R 1
\end{array} \\
R 3 \div 3 \rightarrow R 3
\end{array}\left[\begin{array}{ccc:ccc}
6 & 0 & -6: 3 & -3 & 0 \\
0 & 2 & -5 & 2 & -3 & 0 \\
0 & 0 & 3 & 3 & 3 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ccc:ccc}
6 & 0 & -6 & 3 & -3 & 0 \\
0 & 2 & -5 & 2 & -3 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll:lll}
6 & 0 & 0 & 9 & 3 & 6 \\
0 & 2 & 0 & 7 & 2 & 5 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] \\
& (5) R 3+R 2 \rightarrow R 2 \\
& R_{1} \div 6 \rightarrow R_{1} \\
& (6) R 3+R 1 \rightarrow R 1 \\
& R 2 \div 2 \rightarrow R 2 \\
& x=A^{-1} b \\
& =\left[\begin{array}{ccc}
3 / 2 & \frac{1}{2} & 1 \\
7 / 2 & 1 & 5 / 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
8 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{23}{2} \\
51 / 2 \\
13
\end{array}\right] \\
& {\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & : 3 / 2 & \frac{1}{2} & 1 \\
0 & 1 & 0 & 7 / 2 & 1 & 5 / 2 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

Solve by matrix method:

$$
\begin{aligned}
& \left\{\begin{array}{rl}
x-y+z & =-4 \\
x+y-2 z & =12 \\
-x+z & =-5
\end{array} \quad\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -2 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-4 \\
12 \\
-5
\end{array}\right]\right. \\
& {\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & -2 & 0 & 1 & 0 \\
-1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc:ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
0 & -1 & 2 & 1 & 0 & 1
\end{array}\right]} \\
& R_{3}+R_{2} \rightarrow R_{2} \\
& R 1+R_{3} \rightarrow R_{3} \\
& R 2+R 1 \rightarrow R 1 \\
& R 2+R 3 \rightarrow R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
1 & -1 & 1: 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
0 & -1 & 2 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc:c}
1 & 0 & 0 & 1
\end{array} 1119\right.} \\
& R 3+R 2 \rightarrow R 2 \\
& \begin{array}{l}
{\left[\begin{array}{lll:lll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 1 & 2
\end{array}\right]}
\end{array} A_{A^{-1}}^{\left[\begin{array}{lll}
1 & &
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
-4 \\
12 \\
-5
\end{array}\right]\right.} \\
& \{(3,5,-2)\} \\
& =\left[\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right]
\end{aligned}
$$

Is there a way to determine whether or not A^{-1} exist? Yes

Determinant is a numerical value associated with every square matrix. If $\operatorname{det}=0 \rightarrow$ No inverse, A is a Singular matrix.

How to find the determinant?

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{1} & b \\
c^{2} & d_{d}
\end{array}\right] \quad|A|=a d-b c\left|\begin{array}{cc}
2 & 6 \\
-1 & 4
\end{array}\right| \\
&=2(4)-6(-1)=14
\end{aligned}
$$

$$
\begin{aligned}
& A=\left|\begin{array}{cc}
7 & 6 \\
10 & 3
\end{array}\right|=7(3)-10(6)=21-60 \\
& =-39 \\
& A=\left[\begin{array}{cc}
5 & 3 \\
-10 & -6
\end{array}\right],|A|=5(-6)-3(-10) \\
& \begin{array}{l}
\text { Matrix } \\
\text { Bet. }
\end{array}=-30+30 \\
& =0
\end{aligned}
$$

$\neg A$ is a singular matrix since $|A|=0$ A^{-1} does not exist.

$$
A=\left[\begin{array}{ccc}
2 & -1 & 5 \\
1 & 0 & -4 \\
3 & -1 & 1
\end{array}\right]
$$

Expand by first row

$$
\begin{aligned}
& =2\left|\begin{array}{cc}
0 & -4 \\
-1 & 1
\end{array}\right|-(-1)\left|\begin{array}{cc}
1 & -4 \\
3 & 1
\end{array}\right|+5\left|\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right| \\
& =2(0-4)+1(1--12)+5(-1-0) \\
& =-8+13-5=0 \quad \begin{array}{l}
A \text { is singular } \\
A^{-1} \text { does not } \\
\text { exist. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\left|\begin{array}{ccc}
2 & 4 & 2 \\
1 & -3 & 0 \\
-5 & 5 & -1
\end{array}\right| & =2\left|\begin{array}{cc}
-3 & 0 \\
5 & -1
\end{array}\right|-4\left|\begin{array}{cc}
1 & 0 \\
-5 & -1
\end{array}\right|+2\left|\begin{array}{cc}
1 & -3 \\
-5 & 5
\end{array}\right| \\
& =2(3-0)-4(-1-0)+2(5-15) \\
& =6+4-20=-10
\end{aligned}
$$

Since $|A| \neq 0$, then A^{-1} exist.

$$
\begin{aligned}
& I_{4}=\left[\begin{array}{llll}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
|I|=1\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1 \cdot 1\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1 \cdot 1 \cdot(1-0) \\
\left|I_{n}\right|=1
\end{array}\right.
\end{aligned}
$$

Cramer's Rule

$$
\left.\begin{array}{ll}
\begin{cases}a x+b y=c & D \\
e x+f y=j & =\left|\begin{array}{ll}
a & b \\
e & f
\end{array}\right| \\
& D_{x}=\left|\begin{array}{ll}
c & b \\
j & f
\end{array}\right| \quad D_{y}=\left|\begin{array}{ll}
a & c \\
e & j
\end{array}\right| \\
x=\frac{D_{x}}{D}, y=\frac{D y}{D}\end{cases} \\
\left\{\begin{array}{lll}
3 x-2 y=5 & D=\left|\begin{array}{ll}
3 & -2 \\
4 & 1
\end{array}\right|=3-(-8) & D_{x}=\left|\begin{array}{ll}
5 & -2 \\
3 & 1
\end{array}\right|=5-(-6) \\
4 x+y=3 & (1,-1) & D y=\left|\begin{array}{ll}
3 & 5 \\
4 & 3
\end{array}\right|=9-20
\end{array}\right. \\
\begin{array}{lll}
x=\frac{D x}{D}=\frac{11}{11}=1
\end{array} \\
y=\frac{D_{y}}{D}=\frac{-11}{11}=-1 & (11
\end{array}\right]
$$

Solve by Cramer's rule

$$
\begin{aligned}
& \begin{cases}-5 x-8 y=3 & D=\left|\begin{array}{cc}
-5 & -8 \\
4 & 7
\end{array}\right|=-35-(-32)=-3 \\
4 x+7 y=13\end{cases} \\
& x=\frac{D x}{D} \quad y=\frac{D y}{D}
\end{aligned} \quad D_{x}=\left|\begin{array}{cc}
3 & -8 \\
13 & 7
\end{array}\right|=21-(-104)=125| | ~\left(\begin{array}{ll}
D_{y}=\left|\begin{array}{cc}
-5 & 3 \\
4 & 13
\end{array}\right|=-65-12=-77 \\
x=\frac{125}{-3} \quad y=\frac{-77}{-3} & \text { Whenever } D=0, \\
\left\{\left(\frac{-125}{3}, \frac{77}{3}\right)\right\} & \text { Do not use Cramer's rule }
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{r}
x+y-z=0 \quad \text { Solve for } z \text { by } \\
x \\
-y+z=4 \\
y-z=-3
\end{array}\right. \\
& D=\left|\begin{array}{rrr}
1 & 1 & -1 \\
1 & -1 & 1 \\
0 & 1 & -1
\end{array}\right| \quad D_{z}=\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 4 \\
0 & 1 & -3
\end{array}\right| \\
& D=1\left|\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right|-1\left|\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right|+(-1)\left|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right| \begin{array}{c}
\text { Tamer's rule. } \\
\text { Cannot } \\
\text { use } \\
\text { kramer's Rule }
\end{array}
\end{aligned}
$$

Solve for y only by Cramer's rule

$$
\begin{aligned}
& \left\{\begin{aligned}
x-y & =-2 \\
x+z & =4 \\
y-z & =0
\end{aligned}\right. \\
& D=\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right|=-2 \\
& y=\frac{D y}{D}=\frac{-6}{-2}=3 \\
& D_{y}=\left|\begin{array}{ccc}
1 & -2 & 0 \\
1 & 4 & 1 \\
0 & 0 & -1
\end{array}\right|=-6 \\
& y=3
\end{aligned}
$$

Evaluate

$$
\left|\begin{array}{lll}
x & y & 1 \\
0 & 3 & 1 \\
2 & 0 & 1
\end{array}\right|=0
$$

$$
x\left|\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right|-y\left|\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right|+1\left|\begin{array}{ll}
0 & 3 \\
2 & 0
\end{array}\right|=0
$$

$$
3 x+2 y=6 \text { this line contains }
$$ $(0,3) \dot{\varepsilon} \cdot(2,0)$

find egn of a line that contains

$$
\begin{aligned}
& (5,-2) \\
& \left|\begin{array}{ccc}
x & y & 1 \\
5 & -2 & 1 \\
2 & 3 & 1
\end{array}\right|=0 \\
& x\left|\begin{array}{cc}
-2 & 1 \\
3 & 1
\end{array}\right|-y\left|\begin{array}{ll}
5 & 7 \\
2 & 1
\end{array}\right|+1\left|\begin{array}{cc}
5 & -2 \\
2 & 3
\end{array}\right|=0 \\
& -5 x-\frac{-3 y+19=0}{[5 x+3 y=19}
\end{aligned}
$$

Consider triangle $A B C$ where $A(-4,0), B(0,6), C(10,0)$ find its

$$
\begin{array}{r}
= \pm \frac{1}{2}\left\{-4\left|\begin{array}{cc}
6 & 1 \\
0 & 1
\end{array}\right|-0\left|\begin{array}{c}
\text { who } \\
\text { cares! }
\end{array}\right|+1\left|\begin{array}{cc}
0 & 6 \\
10 & 0
\end{array}\right|\right\} \\
= \pm \frac{1}{2}\{-4(6)-0+1(-60)\}= \pm \frac{1}{2}(-84) \\
=42
\end{array}
$$

open notes Quiz
(1) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 0\end{array}\right] \quad B=\left[\begin{array}{cc}1 & -1 \\ 2 & -2 \\ 3 & -3\end{array}\right]$ find $A B$
(2) $A=\left[\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right]$ find A^{-1}

